Seasonal Dynamics of Mineral Uptake in Whole Pinot noir Vines in a red-hill soil

R. Paul Schreiner USDA-ARS-HCRL Corvallis, OR

John Baham & Crop & Soil Science OSU, Corvallis, OR

Research Methods for Mineral Budget of Pinot noir vines

- Whole-vine mineral nutrient budget was conducted on 21-year-old vines at Woodhall 2001
- Mineral concentrations & contents were determined in 9 tissue types at 7 sampling times (4 reps)
- Roots were estimated by extraction from random soil monoliths (50 X 50 cm) representing 1/4 soil volume in vine rows and 1/8 soil volume in alleys
- Macro- & Micro-elements measured, except S
- Growers will benefit by knowing the timing of uptake of minerals, estimates of storage and reallocation of minerals, and the quantities of minerals that leave the system

Collection of Above- ground Tissues

- 1 Fruit / Flowers including stems
- 2 Leaves
- 3 Petioles
- 4 Green Canes including laterals
- 5 Woody Canes
- 6 Trunk including below ground

Tissues were separated by hand. Whole samples or sub-samples were oven dried for 7 days and analyzed for N,P,K,Ca,Mg,Fe, Mn,Zn,B & Cu concentrations.

Estimation & Collection of Root Tissues

Estimation & Collection of Root

Handpicking to collect Fine Roots at the lab

All roots were carefully washed to remove soil prior to oven drying.

Fine roots were sonicated to remove soil.

Fine root sub-samples used for mycorrhizal assays (Colon. & DNA)

Root Tissues Analyzed

- 7 Large woody roots (>4mm diam.)
- 8 Small woody roots (1-4mm diam.)
- **9 Fine roots** (primary roots, cortex)

Netting to catch leaves October 16, 2001

What did we find?

- Dry Matter Allocation
- Macro-Nutrient Concentrations and Contents
- Macro-Nutrient Uptake Rates
- Uptake versus Soil Nitrogen Availibility & Rainfall
- Comparison to Chenin Blanc budget
- Summarize Our Findings (Uptake, Losses and Re-Allocation from Reserves)

Shoot Dry Matter Changes in 21 yr old Pinot noir vines at WH 2001

Root Dry Matter Changes in 21 yr old Pinot noir vines at WH 2001

Dry Matter Accumulation in 21-yr-old Pinot noir vines, WH 2001

Nitrogen Concentrations in 9 Tissues of Pinot noir at woodhall 2001

Nitrogen Contents in 9 Tissues of Pinot noir at Woodhall, 2001

Phosphorus Concentrations in 9 Tissues of Pinot noir at woodhall 2001

Phosphorus Contents in 9 Tissues of Pinot noir at Woodhall, 2001

Potassium Concentrations in 9 Tissues of Pinot noir at woodhall 2001

Potassium Contents in 9 Tissues of Pinot noir at Woodhall, 2001

Calcium Concentrations in 9 Tissues of Pinot noir at Woodhall, 2001

Calcium Contents in 9 Tissues of Pinot noir at Woodhall, 2001

Magnesium Concentrations in 9 Tissues of Pinot noir at woodhall 2001

Magnesium Contents in 9 Tissues of Pinot noir at Woodhall, 2001

Calculating Demand & Uptake of Vines 21 yr-old Pinot noir vines at Woodhall

Canopy Demand = Change in total content of each mineral in green canes + petioles + leaves + fruit between selected sampling times.

Vine Uptake = Change in total content of each mineral in all tissues between selected sampling times.

Content = concentration of mineral X dry mass.

Figure 2. Canopy Demand and Whole-Vine Uptake of Macronutrients

Whole Vine Daily Uptake Rates of Macronutrients in Pinot noir, WH 2001

Whole Vine N Uptake & Soil N Availability for Pinot noir – WH 2001

N Uptake, Soil Nitrate & Rainfall for Pinot noir - Woodhall, OR 2001

N Demand & Uptake Rates in Chenin blanc 1986 (Fresno, CA - Williams et. al.) and Pinot noir 2001 (Woodhall, OR - Schreiner & Baham)

Summary of Macro-nutrient Use in Pinot noir 2001 in Pounds / acre

<u>Nutrient</u>	Canopy Demand by harvest	Soil Uptake by harvest	Fruit Losses	Leaf <u>Re-alloc</u> .	Post- harvest <u>Uptake</u>
N	25.8	12.7	5.9	7.9	1.0
Р	2.8	2.3	1.0	0.6	-0.3
K	28.0	26.6	10.8	1.8	0.8
Ca	21.8	21.3	1.0	-0.4	-0.7
Mg	7.4	6.2	0.6	0.1	0

Relative Importance of Various Tissues to supply Macro-nutrients from Reserves

<u>Nutrient</u>	Fine Roots	Small Woody <u>Roots</u>	Large Woody <u>Roots</u>	<u>Trunk</u>	% Canopy Demand from Reserves
N	13.3%	13.9%	47.2%	25.5%	51.0 %
Р	25.0%	0	45.8%	29.2%	27.0 %
K	45.3%	0	0	54.7%	10.5 %
Ca	8.9%	0	27.8%	63.3%	2.0 %
Mg	3.5%	0	9.6%	86.9%	17.8 %

Conclusions from 2001 Nutrient Budget Study

- Macro-nutrient uptake was closely tied to canopy demand for most nutrients.
- Micro-nutrient data was highly variable.
- N and (to some extent P) uptake was early in the season & much from reserves (N - 51%, P - 27%).
- K, Ca and Mg uptake was later in the season & far less from reserves (K - 10%, Ca - 2%, Mg - 18%).
- Most important reserve tissues were: large roots for N & P, trunk & fine roots for K, trunk for Mg
- Recapture of leaf nutrients significant for N & P.
- Which nutrient limiting growth unclear (N, P, Zn, or Ca & Mg are possible candidates).

Acknowledgements

HCRL

Keiko Mihara
Matthew Scott
Stepfanie Lair
Corin Schowalter
Joyce Spain

OSU

Scott Robbins
Matt Compton
Jeff Cygan

\$\$

USDA, OSU, OWAB

Future Plans for this Project

- Construct a similar budget in 2002 to address year-to year variation.
- More careful selection of vines to be harvested based on trunk size, woody cane diameters, & 2001 pruning weights.
- Gypsum (CaSO₄) added to half of the vines to be harvested to address the issue of calcium limitation in red-hill soils.
- Examine impact of subsoil gypsum on root growth in subsoil, Ca uptake, cane growth rates, fruit set, & fruit quality.

Gypsum Treatments Applied to select vines At Woodhall Feb. 15, 2002

Gypsum applied In 30 cores/vine 9lb CaSO₄/vine ~18 ton/acre